JAVA Tutorial School

Get Enter To The World of J2EE Through "JAVA Tutorial School".

JAVA Tutorial School

Get Enter To The World of J2EE Through "JAVA Tutorial School".

JAVA Tutorial School

Get Enter To The World of J2EE Through "JAVA Tutorial School".

J2EE Tutorial School

Get Enter To The World of J2EE Through "JAVA Tutorial School".

J2EE Tutorial School

Get Enter To The World of J2EE Through "JAVA Tutorial School".

Wednesday, 2 April 2014

"Basic Operators in Java"



Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the following groups:
  • Arithmetic Operators
  • Relational Operators
  • Bitwise Operators
  • Logical Operators
  • Assignment Operators
  • Misc Operators

The Arithmetic Operators:

Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The following table lists the arithmetic operators:
Assume integer variable A holds 10 and variable B holds 20, then:

OperatorDescriptionExample
+Addition - Adds values on either side of the operatorA + B will give 30
-Subtraction - Subtracts right hand operand from left hand operandA - B will give -10
*Multiplication - Multiplies values on either side of the operatorA * B will give 200
/Division - Divides left hand operand by right hand operandB / A will give 2
%Modulus - Divides left hand operand by right hand operand and returns remainderB % A will give 0
++Increment - Increases the value of operand by 1B++ gives 21
--Decrement - Decreases the value of operand by 1B-- gives 19

The Relational Operators:

There are following relational operators supported by Java language
Assume variable A holds 10 and variable B holds 20, then:

OperatorDescriptionExample
==Checks if the values of two operands are equal or not, if yes then condition becomes true.(A == B) is not true.
!=Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.(A != B) is true.
>Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.(A > B) is not true.
<Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.(A < B) is true.
>=Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true.(A >= B) is not true.
<=Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true.(A <= B) is true.

The Bitwise Operators:

Java defines several bitwise operators, which can be applied to the integer types, long, int, short, char, and byte.
Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and b = 13; now in binary format they will be as follows:
a = 0011 1100
b = 0000 1101
-----------------
a&b = 0000 1100
a|b = 0011 1101
a^b = 0011 0001
~a  = 1100 0011
The following table lists the bitwise operators:
Assume integer variable A holds 60 and variable B holds 13 then:

OperatorDescriptionExample
&Binary AND Operator copies a bit to the result if it exists in both operands.(A & B) will give 12 which is 0000 1100
|Binary OR Operator copies a bit if it exists in either operand.(A | B) will give 61 which is 0011 1101
^Binary XOR Operator copies the bit if it is set in one operand but not both.(A ^ B) will give 49 which is 0011 0001
~Binary Ones Complement Operator is unary and has the effect of 'flipping' bits.(~A ) will give -61 which is 1100 0011 in 2's complement form due to a signed binary number.
<<Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.A << 2 will give 240 which is 1111 0000
>>Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.A >> 2 will give 15 which is 1111
>>>Shift right zero fill operator. The left operands value is moved right by the number of bits specified by the right operand and shifted values are filled up with zeros.A >>>2 will give 15 which is 0000 1111

The Logical Operators:

The following table lists the logical operators:
Assume Boolean variables A holds true and variable B holds false, then:

OperatorDescriptionExample
&&Called Logical AND operator. If both the operands are non-zero, then the condition becomes true.(A && B) is false.
||Called Logical OR Operator. If any of the two operands are non-zero, then the condition becomes true.(A || B) is true.
!Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true then Logical NOT operator will make false.!(A && B) is true.

The Assignment Operators:

There are following assignment operators supported by Java language:

OperatorDescriptionExample
=Simple assignment operator, Assigns values from right side operands to left side operandC = A + B will assign value of A + B into C
+=Add AND assignment operator, It adds right operand to the left operand and assign the result to left operandC += A is equivalent to C = C + A
-=Subtract AND assignment operator, It subtracts right operand from the left operand and assign the result to left operandC -= A is equivalent to C = C - A
*=Multiply AND assignment operator, It multiplies right operand with the left operand and assign the result to left operandC *= A is equivalent to C = C * A
/=Divide AND assignment operator, It divides left operand with the right operand and assign the result to left operandC /= A is equivalent to C = C / A
%=Modulus AND assignment operator, It takes modulus using two operands and assign the result to left operandC %= A is equivalent to C = C % A
<<=Left shift AND assignment operatorC <<= 2 is same as C = C << 2
>>=Right shift AND assignment operatorC >>= 2 is same as C = C >> 2
&=Bitwise AND assignment operatorC &= 2 is same as C = C & 2
^=bitwise exclusive OR and assignment operatorC ^= 2 is same as C = C ^ 2
|=bitwise inclusive OR and assignment operatorC |= 2 is same as C = C | 2

Misc Operators

There are few other operators supported by Java Language.

Conditional Operator ( ? : ):

Conditional operator is also known as the ternary operator. This operator consists of three operands and is used to evaluate Boolean expressions. The goal of the operator is to decide which value should be assigned to the variable. The operator is written as:
variable x = (expression) ? value if true : value if false
Following is the example:
public class Test {

   public static void main(String args[]){
      int a , b;
      a = 10;
      b = (a == 1) ? 20: 30;
      System.out.println( "Value of b is : " +  b );

      b = (a == 10) ? 20: 30;
      System.out.println( "Value of b is : " + b );
   }
}
This would produce the following result:
Value of b is : 30
Value of b is : 20

instanceof Operator:

This operator is used only for object reference variables. The operator checks whether the object is of a particular type(class type or interface type). instanceof operator is wriiten as:
( Object reference variable ) instanceof  (class/interface type)
If the object referred by the variable on the left side of the operator passes the IS-A check for the class/interface type on the right side, then the result will be true. Following is the example:
public class Test {

   public static void main(String args[]){
      String name = "James";
      // following will return true since name is type of String
      boolean result = name instanceof String;  
      System.out.println( result );
   }
}
This would produce the following result:
true
This operator will still return true if the object being compared is the assignment compatible with the type on the right. Following is one more example:
class Vehicle {}

public class Car extends Vehicle {
   public static void main(String args[]){
      Vehicle a = new Car();
      boolean result =  a instanceof Car;
      System.out.println( result );
   }
}
This would produce the following result:
true

Precedence of Java Operators:

Operator precedence determines the grouping of terms in an expression. This affects how an expression is evaluated. Certain operators have higher precedence than others; for example, the multiplication operator has higher precedence than the addition operator:
For example, x = 7 + 3 * 2; here x is assigned 13, not 20 because operator * has higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.
Here, operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom. Within an expression, higher precedence operators will be evaluated first.
Category Operator Associativity 
Postfix () [] . (dot operator)Left to right 
Unary ++ - - ! ~Right to left 
Multiplicative  * / % Left to right 
Additive  + - Left to right 
Shift  >> >>> <<  Left to right 
Relational  > >= < <=  Left to right 
Equality  == != Left to right 
Bitwise AND Left to right 
Bitwise XOR Left to right 
Bitwise OR Left to right 
Logical AND && Left to right 
Logical OR || Left to right 
Conditional ?: Right to left 
Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left 
Comma Left to right 

Modifiers in Java



Modifiers are keywords that you add to those definitions to change their meanings. The Java language has a wide variety of modifiers, including the following:
To use a modifier, you include its keyword in the definition of a class, method, or variable. The modifier precedes the rest of the statement, as in the following examples (Italic ones):
public class className {
   // ...
}
private boolean myFlag;
static final double weeks = 9.5;
protected static final int BOXWIDTH = 42;
public static void main(String[] arguments) {
   // body of method
}

Access Control Modifiers:

Java provides a number of access modifiers to set access levels for classes, variables, methods and constructors. The four access levels are:
  • Visible to the package, the default. No modifiers are needed.
  • Visible to the class only (private).
  • Visible to the world (public).
  • Visible to the package and all subclasses (protected).

Non Access Modifiers:

Java provides a number of non-access modifiers to achieve many other functionality.
  • The static modifier for creating class methods and variables
  • The final modifier for finalizing the implementations of classes, methods, and variables.
  • The abstract modifier for creating abstract classes and methods.
  • The synchronized and volatile modifiers, which are used for threads.

Thread Life Cycle


                      Java Thread

Java is amultithreaded programming language which means we can develop multithreaded program using Java. A multithreaded program contains two or more parts that can run concurrently and each part can handle different task at the same time making optimal use of the available resources specially when your computer has multiple CPUs.
By definition multitasking is when multiple processes share common processing resources such as a CPU. Multithreading extends the idea of multitasking into applications where you can subdivide specific operations within a single application into individual threads. Each of the threads can run in parallel. The OS divides processing time not only among different applications, but also among each thread within an application.
Multithreading enables you to write in a way where multiple activities can proceed concurrently in the same program.

Life Cycle of a Thread:

A thread goes through various stages in its life cycle. For example, a thread is born, started, runs, and then dies. Following diagram shows complete life cycle of a thread.
Above-mentioned stages are explained here:
  • New: A new thread begins its life cycle in the new state. It remains in this state until the program starts the thread. It is also referred to as a born thread.
  • Runnable: After a newly born thread is started, the thread becomes runnable. A thread in this state is considered to be executing its task.
  • Waiting: Sometimes, a thread transitions to the waiting state while the thread waits for another thread to perform a task.A thread transitions back to the runnable state only when another thread signals the waiting thread to continue executing.
  • Timed waiting: A runnable thread can enter the timed waiting state for a specified interval of time. A thread in this state transitions back to the runnable state when that time interval expires or when the event it is waiting for occurs.
  • Terminated: A runnable thread enters the terminated state when it completes its task or otherwise terminates.

Thread Priorities:

Every Java thread has a priority that helps the operating system determine the order in which threads are scheduled.
Java thread priorities are in the range between MIN_PRIORITY (a constant of 1) and MAX_PRIORITY (a constant of 10). By default, every thread is given priority NORM_PRIORITY (a constant of 5).
Threads with higher priority are more important to a program and should be allocated processor time before lower-priority threads. However, thread priorities cannot guarantee the order in which threads execute and very much platform dependentant.

Create Thread by Implementing Runnable Interface:

If your class is intended to be executed as a thread then you can achieve this by implementing Runnableinterface. You will need to follow three basic steps:

STEP 1:

As a first step you need to implement a run() method provided by Runnable interface. This method provides entry point for the thread and you will put you complete business logic inside this method. Following is simple syntax of run() method:
public void run( )

STEP 2:

At second step you will instantiate a Thread object using the following constructor:
Thread(Runnable threadObj, String threadName);
Where, threadObj is an instance of a class that implements the Runnable interface and threadName is the name given to the new thread.

STEP 3

Once Thread object is created, you can start it by calling start( ) method, which executes a call to run( ) method. Following is simple syntax of start() method:
void start( );

Example:

Here is an example that creates a new thread and starts it running:

++++++++++++++++++++++++++++++++

class RunnableDemo implements Runnable 
{
   private Thread t;
   private String threadName;
   
   RunnableDemo( String name)
{
threadName = name;
        System.out.println("Creating " +  threadName );
    }
   public void run() 
{
      System.out.println("Running " +  threadName );
      try {
          for(int i = 4; i > 0; i--) 
{
            System.out.println("Thread: " + threadName + ", " + i);
            // Let the thread sleep for a while.
            Thread.sleep(50);
          }
         } 
    catch (InterruptedException e) 
   {
System.out.println("Thread " +  threadName + " interrupted.");
         }
      System.out.println("Thread " +  threadName + " exiting.");
    }
   
   public void start ()
   {
      System.out.println("Starting " +  threadName );
      if (t == null)
      {
         t = new Thread (this, threadName);
         t.start ();
      }
   }

}

public class TestThread 
{
   public static void main(String args[]) 
{
       RunnableDemo R1 = new RunnableDemo( "Thread-1");
         R1.start();
         RunnableDemo R2 = new RunnableDemo( "Thread-2");
         R2.start();
   }   
}